Measuring the Mass and Spin of Dark Matter at a Lepton Collider

Neil Christensen

PITTsburgh Particle, Astroparticle and Cosmology Center (PITT PACC)

Dark Matter

- Existence of dark matter has been well established from astronomical observations.
- Dark matter is non-hadronic and electrically neutral making it difficult to measure its properties.
- Many possibilities for dark matter. WIMPs are well motivated.
- If sufficiently light, WIMPs could be produced at colliders.

Antlers

Kinematic Cusps & Endpoints

Kinematic Cusps & Endpoints Challenges

- $D \rightarrow B \rightarrow a$ may not be possible.
 - Ex: h may be too light for $h o 2 \tilde{l} o 2 \tilde{\chi}_1^0 + 2 a$
- Cusps or endpoints could be difficult to measure.
 - Ex. Maa~MZ
 - Ex. Maa~0GeV
- $\cos \theta$ smeared by boost of collision frame.

20

-1

-0.5

 $Cos(\theta)$

0.5

0 4

 E_{μ} (GeV)

$$m_{rec}^2 \equiv m_{\tilde{\chi}_1^0 \tilde{\chi}_1^0}^2 = s - 2\sqrt{s} \left(E_{a_1} + E_{a_2} \right) + m_{aa}^2$$

Antlers at Lepton Colliders

 E_{μ} (GeV)

95% CL: 100fb⁻¹

80%:60% $\sim m_{ ilde{l}_R}$ right polarization

80%:60% left polarization

Lepton Collider Mass Determination

- Lepton colliders provide a known collision frame.
 - m_{rec} can be used to remove most of the SM background.
 - $\cos \theta$ endpoints not significantly smeared.
- Cusps and end points of kinematical variables of Antler diagrams give good mass measurement.
 - Improve on E_a endpoints, especially if E_{amin} is too small to be measured.
- Polarization can distinguish between \tilde{l}_L and \tilde{l}_R even if close to each other (in addition to further suppressing the SM background).

Lepton Collider Spin Determination

$$\langle j, m', \theta | j, m \rangle = d_{m,m'}^j(\theta)$$

- What we would really like is to measure the Wigner d-functions directly.
 - Dark matter particles missing: not enough information.
- If we know the masses of the particles in the Antler diagram:
 - 8 unkowns: 8 equations: However, some quadratic: 2-fold ambiguity.
- We have discovered a new way to fully reconstruct the absolute value of the angular distribution and partially reconstruct the sign.
- To be published soon: Christensen, Salmon.